Decision Tree of Occupational Lung Cancer Using Classification and Regression Analysis
نویسندگان
چکیده
OBJECTIVES Determining the work-relatedness of lung cancer developed through occupational exposures is very difficult. Aims of the present study are to develop a decision tree of occupational lung cancer. METHODS 153 cases of lung cancer surveyed by the Occupational Safety and Health Research Institute (OSHRI) from 1992-2007 were included. The target variable was whether the case was approved as work-related lung cancer, and independent variables were age, sex, pack-years of smoking, histological type, type of industry, latency, working period and exposure material in the workplace. The Classification and Regression Test (CART) model was used in searching for predictors of occupational lung cancer. RESULTS In the CART model, the best predictor was exposure to known lung carcinogens. The second best predictor was 8.6 years or higher latency and the third best predictor was smoking history of less than 11.25 pack-years. The CART model must be used sparingly in deciding the work-relatedness of lung cancer because it is not absolute. CONCLUSION We found that exposure to lung carcinogens, latency and smoking history were predictive factors of approval for occupational lung cancer. Further studies for work-relatedness of occupational disease are needed.
منابع مشابه
Predicting The Type of Malaria Using Classification and Regression Decision Trees
Predicting The Type of Malaria Using Classification and Regression Decision Trees Maryam Ashoori1 *, Fatemeh Hamzavi2 1School of Technical and Engineering, Higher Educational Complex of Saravan, Saravan, Iran 2School of Agriculture, Higher Educational Complex of Saravan, Saravan, Iran Abstract Background: Malaria is an infectious disease infecting 200 - 300 million people annually. Environme...
متن کاملDIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION
Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...
متن کاملApplying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study
Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...
متن کاملApplying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study
Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...
متن کاملمقایسه دقت پیشبینی رگرسیون لجستیک و درخت ردهبندی در تعیین عوامل خطر و پیشبینی ابتلا به سرطان پستان
Background and Objectives: Breast cancer is one of the most common malignancies in women which accounts for the highest number of deaths after lung cancer. The aim of the current study was to compare the logistic regression and classification tree models in determining the risk factors and prediction of breast cancer. Methods: We used from the data of a case-control study conducted on 303 pa...
متن کامل